

CONSORT 2010 Flow Diagram

Enrollment

Part B: IHC of core biopsy samples

Supplementary Figure S3: Correlation of Affymetrix microarray expression data and IHC scoring of three genes in independent TNBC dataset RNA expression from Affymetrix on y-axis is compared with immunohistochemical scoring for three individual genes (VEGFA, NDRG1, CSTB) from the hypoxia signature. R² values are from Spearman rank correlation.

Supplementary Figure S4: Para-necrotic expression of NDRG1 in TNBC Strong expression of NDRG1 is detected in regions of tumor necrosis (upper part) as well as DCIS necrosis (lower part).

Basal Lum Her2-E NL Her2-E LumB NL Basal-like LumA AIMS subtypes ER-relate Basal-KR Basal-core Proliferati Adipocyte Stroma Ribosoma IFN MHC1 T-cell Gene signatures ER-related Basal Proliferation Adipocyte Gene cluster Stroma Ribosomal IFN MHC1 T-cell Hypoxia

High Quality Samples (QC PASS)

Supplementary Figure S5: Comparison of signature detection in High Quality and Low Quality Samples

Upper row presents results from AIMS subtyping for 221 *High Quality Samples* (left) and 68 *Low Quality samples* (right). Log₂ count data of the 268 genes shown in the lower (red/green) heatmaps were normalized by median centering across all 289 samples together for the analysis shown here. Gene signatures in the above (yellow/blue) heatmaps were calculated as mean values of the respective gene clusters in the lower panels. The *Low Quality samples* on the right show a larger proportion of samples classified as Her2-enriched and Normal-Like (NL) subtypes (Supplementary Table S8). The heatmaps of the *Low Quality samples* reveal that no effective detection was obtained for most individual genes (green in the lower right panel) and signatures (blue in the upper right panel). (Sample sorting from left to right follows AIMS subtype and subsequently T-cell signature expression).

Supplementary Figure S6: Correlation of proliferation signature and histological grade

Box-plot demonstrating expression of proliferation signature in 221 high quality samples stratified by histological grading (median -0.73, -0.39, and 0.53 in G1, G2, and G3, respectively; P<0.001).

Supplementary Figure S7: Poor detection of NDRG1 expression signal in TMA analysis

Scatterplot comparing NDRG1-RNA-Seq expresssion (x-axis) and IHC detection on TMA (y-axis) as percent positive cells from from digital image analysis by QuPath. Horizontal and vertical lines represent 1.5 z-score cutoff values for RNA-Seq and TMA-IHC, respectively. In general, samples with high percentage of positive cell in the TMA analysis are associated with higher RNA-Seq values (Spearman rank correlation = 0.429). But for many samples with high RNA expression the signal was lost in TMA analysis. 23 of the samples, which were also analyzed by whole-slide IHC of core biopsies, are coloured in orange (\geq 10% positive cells) and green (<10% positive cells) according to the whole-slide result. The majority of the positive samples from whole slide IHC (orange) did not reach the 10% value in the TMA analysis.

Supplementary Figure S8: Hypoxia signature and response by treatment arm

Box-plots of expression of the hypoxia signature from RNA-Seq in samples showing a pCR (red) or not (blue). The box-plots are given separately for the patients from the two treatment arms of the trial either with bevacizumab (ECB-TB) or without (EC-T). Univariate logistic regression of pCR by the hypoxia signature was significant in the bevacizumab group (ECB-TB: OR 3.52, 95% CI 1.91-6.49, P<0.001) and only showed a trend in the group without bevacizumab (EC-T: OR 1.40, 95% CI 0.97-2.02, P=0.076).

Order of	Role	Team members	Location/Affiliation	Blinding status
analysis				
1	Pathological analyses, tissue banking, sample provision	CD, KE, BS, CSo, IS, TF	Local trial units, central	blinded to molecular and
			pathology	clinical study data
2	RNA preparation and sequencing	BMY, BLJ	Avera Cancer Institute	fully blinded
3	Primary RNA-Seq raw data analysis and QC	TM, JB	Avera Cancer Institute	fully blinded
4	Sample coding, dataset assembly and distribution	KW, VN	GBG-Statistics Dept.	unblinded
5	Blinded gene expression analysis, development of	ТК, UH	Goethe University	fully blinded
	statistical analysis plan and SPSS script			
6	Correlation with patient data according to predeveloped	KW, VN	GBG-Statistics Dept.	unblinded
	SPSS script			
7	Blinded interpretation of summary results	ТК, UH	Goethe University	no patient level data
8	Monitoring and review of results	SL, MU, PAF, FM, VM, BG,	GBG-Boards	no patient level data
		CSch, CH, ES, JH, MvM		

Supplementary Table S1: Specific analysis roles and blinding status of contributing teams

Supplementary Table S2: Pre-defined analytical aims of the study:

Pre-	defined analytical aims of the study:
1.	Concordance of RNA-Seq-derived genomic ER-/PR-status, proliferation, immune signature expression, and molecular subtype with pathology-derived
	IHC-based ER-/PR-status, histological grading, and tumor-infiltrating-lymphocyte (TIL)-scoring, respectively.
2.	Robustness of the above concordances with regard to sample quality (QC class).
3.	Univariate predictive value for pCR of RNA-Seq-derived molecular subtypes, and signatures for proliferation, stroma, T-cell signature, and hypoxia
	signature.
4.	Multivariate logistic regression of pCR including the following predictor variables:
	a) Hormone receptor status, treatment arm (+/- Bev), hypoxia signature, and the interaction between hypoxia signature and treatment arm.
	b) All predictor variables from (a), with additional clinical variables (age, cT, cN, histological grade) as predictors.

Parameter	Category	Total cohort	RNA-Seq data	P-Value [§]	High Quality	<i>P-</i> Value [§]
					RNA-Seq data	
		1540 [#] (100.0%)	289 (100.0%)		221 (100.0%)	
Age	median	48	46	<0.001	46	0.009
clin. tumor status	T1	261 (17.0%)	45 (15.6%)	0.028	37 (16.8%)	0.035
	T2	883 (57.5%)	188 (65.3%)		145 (65.9%)	
	Т3	224 (14.6%)	33 (11.5%)		23 (10.5%)	
	T4a-c	79 (5.1%)	8 (2.8%)		8 (3.6%)	
	T4d	89 (5.8%)	14 (4.9%)		7 (3.2%)	
	missing	4	1		1	
clin. lymph node status	negative	772 (51.0%)	148 (51.6%)	n.s.	115 (52.5%)	n.s.
	LN1-3	668 (44.1%)	124 (43.2%)		93 (42.5%)	
	LN4-9	57 (3.8%)	11 (3.8%)		7 (3.2%)	
	LN>=10	17 (1.1%)	4 (1.4%)		4 (1.8%)	
	missing	26	2		2	
HER2 status	negative	1540 (100.0%)	289 (100.0%)		221 (100.0%)	
Hormone receptor status	negative	558 (36.2%)	133 (46.0%)	<0.001	102 (46.2%)	0.001
	positive	982 (63.8%)	156 (54.0%)		119 (53.8%)	
Histological grade	G1	53 (3.5%)	9 (3.1%)	<0.001	7 (3.2%)	<0.001
	G2	781 (51.0%)	119 (41.5%)		86 (39.3%)	
	G3	697 (45.5%)	159 (55.4%)		126 (57.5%)	
	missing	9	2		2	
Histological subtype	Ductal invasive	1241 (80.8%)	238 (82.4%)	n.s.	179 (81.0%)	n.s.
	Lobular invasive	162 (10.5%)	26 (9.0%)		23 (10.4%)	
	other	133 (8.7%)	25 (8.7%)		19 (8.6%)	
	missing	4	0		0	
Treatment arm	EC-T	743 (48.2%)	150 (51.9%)	n.s.	117 (52.9%)	n.s.
	ECB-TB	797 (51.8%)	139 (48.1%)		104 (47.1%)	
pCR	no	1156 (75.1%)	149 (51.6%)	< 0.001	112 (50.7%)	< 0.001
	yes	384 (24.9%)	140 (48.4%)		109 (49.3%)	

Supplementary Table S3: Comparison of clinical parameters of the complete trial cohort and the RNA-Seq cohorts

⁸ *P*-values are the result of Fisher's exact tests for binary variables, of chi-square tests for variables with three or more levels, and of Wilcoxon test for continous variables, respectively. [#] 1540 total patients with HER2 negative disease with response data from treatment arms out of the ITT population of 2572 patients from the GeparQuinto trial.

Supplementary Table S4: Gene lists of signatures

Signature	Gene	EntrezID	Signature	Gene EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID	Signature	Gene	EntrezID
Adipocyte	AASS	10157	Basal	ABCA13	ER-related	ABCC8	6833	Hypoxia	CSTB	1476	IFN	CMPK2		MHC1	GBP1	2633	Proliferation	ANLN		Ribosomal	CSDE1	7812	Stroma	ADAM12	8038	T-Cell	B2M	567
Adipocyte	ABCA10		Basal	COL27A1	ER-related	AFF3	3899	Hypoxia	NDRG1	10397	IFN	DDX58	23586	MHC1	GBP2	2634	Proliferation	ARHGAP11A	9824	Ribosomal	EEF1A1	1915	Stroma	ADAMTS12	81792	T-Cell	CD74	972
Adipocyte	ABCA6	23460	Basal	CRYAB 1410	ER-related	AGR2	10551	Нурохіа	VEGFA	7422	IFN	DDX60	55601	MHC1	HLA-A	3105	Proliferation	ASPM	259266	Ribosomal	EEF1G	1937	Stroma	BNC2	54796	T-Cell	CIITA	4261
Adipocyte	ABCAS	10351	Basal	ELF5 2001	ER-related	AR CA12	36/				IFN	DDX60L	5610	MHC1	HLA-B	3106	Proliferation	AUKKA	6/90	Ribosomai	HSPD1	3329	Stroma	CAUNAIC	1200	T-Cell	CYBB DOCK10	1536
Adipocyte	ADU10	125	Basal	FUACI 2296	ER-related	CADNR	//1				IFN	EIFZAKZ EDSTI1	5610	MHC1	HLA-C	2122	Proliferation	DRIP1	63990	Ribosomal	NACA	10128	Stroma	COLIDAT	1300	T-Cell	DOCK10	1704
Adinocyte	ANK2	287	Basal	KRT23 25984	FR-related	CCDC170	80129				IFN	HERCS	51191	MHC1	HLA-F	3134	Proliferation	BUB1B	701	Ribosomal	PABPC1	26986	Stroma	COLSAS	50509	T-Cell	DOCK8	17.54
Adipocyte	APOD	347	Basal	PROM1 8842	ER-related	CYP2B7P1					IFN	HERC6	55008	MHC1	NLRC5		Proliferation	CCNB1	891	Ribosomal	PRKDC	5591	Stroma	COL8A1		T-Cell	HLA-DPA1	3113
Adipocyte	COL14A1	7373	Basal	RGMA	ER-related	ERBB4	2066				IFN	IF144	10561	MHC1	PSMB8	5696	Proliferation	CDC20	991	Ribosomal	RPL10	6134	Stroma	COMP	1311	T-Cell	HLA-DRA	3122
Adipocyte	FAT4	79633	Basal	SFRP1 6422	ER-related	ESR1	2099				IFN	IFI44L	10964	MHC1	TAP1	6890	Proliferation	CDCA2		Ribosomal	RPL11	6135	Stroma	CRISPLD2	83716	T-Cell	HLA-DRB1	3123
Adipocyte	FREM1		Basal	SLC34A2 10568	ER-related	FOXA1	3169				IFN	IFIH1	64135	MHC1	TAP2	6891	Proliferation	CENPE	1062	Ribosomal	RPL12	6136	Stroma	CTGF	1490	T-Cell	IL10RA	3587
Adipocyte	IGF1	3479	Basal	SLC6A14 11254	ER-related	FSIP1					IFN	IFIT1	3434	MHC1	WARS	7453	Proliferation	CENPF	1063	Ribosomal	RPL19	6143	Stroma	DCHS1	8642	T-Cell	NCKAP1L	3071
Adipocyte	LAMA2	3908	Basal	SOX10 6663	ER-related	GATA3	2625				IFN	IFIT2	3433				Proliferation	CIT	11113	Ribosomal	RPL23A		Stroma	DPYSL3	1809	T-Cell	PARP14	
Adipocyte	PLEKHH2	0.001	Basal	TCF7L1 83439	ER-related	GFRA1	2674				IFN	MX1	4599				Proliferation	DEPDC1	55635	Ribosomal	RPL27A	6157	Stroma	FAP	2191	T-Cell	PARP9	5700
Adipocyte	SPARCL1	8404	Basal	ZNF462	ER-related	GREBI	9687				IFN	MX2	4600				Proliferation	DIAPHS	81624	Ribosomai	RPL3	6122	Stroma	FBLNZ	2199	T-Cell	PIPRC	5/88
Adipocyte	TNYP	79987	Basal	DSC3 1823	ER-related	KDMAR	2925				IFN	OAS1	4938				Proliferation	ECT2	0700	Ribosomal	RPL32	6101	Stroma	FLINC ENIDC1	2318	T-Cell	SAMD9	54609
Adipocyte	TINAD	7140	Basal	EAT2 2196	ER-related	MAPT	4137				IEN	0453	4933				Proliferation	ESPEL EXO1	9156	Ribosomal	RPL5	6125	Stroma	GASE	2621	T-Cell	SAMHD1	25939
			Basal	KRT14 3861	ER-related	MLPH	79083				IFN	PARP12	64761				Proliferation	FANCA	2175	Ribosomal	RPL9	6133	Stroma	GAS7	8522	T-Cell	STAT1	6772
			Basal	KRT16	ER-related	NAT1	9				IFN	PLSCR1	5359				Proliferation	FANCI	55215	Ribosomal	RPLPO	6175	Stroma	GLIS2		T-Cell	STAT2	6773
			Basal	KRT17 3872	ER-related	PGR	5241				IFN	RSAD2	91543				Proliferation	FOXM1	2305	Ribosomal	RPS11	6205	Stroma	IGFBP4	3487	T-Cell	TRIM22	10346
			Basal	KRT5 3852	ER-related	SCUBE2	57758				IFN	SP100	6672				Proliferation	GMPS	8833	Ribosomal	RPS18	6222	Stroma	ITGA11		T-Cell	XRN1	
			Basal	KRT6A	ER-related	SLC44A4	80736				IFN	SP110	3431				Proliferation	GTSE1	51512	Ribosomal	RPS20	6224	Stroma	ITGA5	3678			
			Basal	KRT6B 3854	ER-related	TBC1D9	23158				IFN	UBA7	7318				Proliferation	HIST1H2BO	8348	Ribosomal	RPS24	6229	Stroma	ITGB5	3693			
			Basal	TRIM29 23650	ER-related	THSD4	79875				IFN	XAF1	54739				Proliferation	HJURP	55355	Ribosomal	RPS27A	6233	Stroma	ITGBL1	9358			
											IFN	ZNEX1					Proliferation	IQGAP3	0039	Ribosomai	RPS4X	6191	Stroma	KANK2	25959			
																	Proliferation	KIF14 KIF23	9928	Ribosomal	RPS0 RPS7	6201	Stroma	KIE26B	55083			
																	Proliferation	KIF2C	11004	Ribosomal	RPSA		Stroma	LMOD1	25802			
																	Proliferation	KIFC1	3833	Ribosomal	TPT1	7178	Stroma	LRRC15	131578			
																	Proliferation	KPNA2	3838				Stroma	MAP1A	4130			
																	Proliferation	LMNB1	4001				Stroma	MICAL2	9645			
																	Proliferation	MCM10	55388				Stroma	MMP11	4320			
																	Proliferation	MELK	9833				Stroma	MMP14	4323			
																	Proliferation	MKI67	4288				Stroma	MRC2	9902			
																	Proliferation	NCARD2	4005				Stroma	MVU1	34367			
																	Proliferation	OBC6	23594				Stroma	MYI9	10398			
																	Proliferation	POLO	10721				Stroma	NID1	4811			
																	Proliferation	PRC1	9055				Stroma	NID2	22795			
																	Proliferation	PRR11					Stroma	PCOLCE	5118			
																	Proliferation	RACGAP1	29127				Stroma	PDLIM7	9260			
																	Proliferation	RRM2	6241				Stroma	PHLDB1	23187			
																	Proliferation	SMC4	10051				Stroma	PMEPA1	56937			
																	Proliferation	SPAG5	10615				Stroma	PMP22	5376			
																	Proliferation	TICRR	0431				Stroma	RIN2	54453			
																	Proliferation	TOP2A	7153				Stroma	SERP2	54455			
																	Proliferation	TPX2	22974				Stroma	SFRP4	6424			
																	Proliferation	TTK	7272				Stroma	SPON1	10418			
																							Stroma	SSC5D				
																							Stroma	TAGLN	6876			
																							Stroma	TENM4	26011			
																							Stroma	THY1	7070			
																							Stroma	TIMP3	7077			
																							Stroma	UNC5B	219699			
																							Stroma	ZFHX4	79776			

Gene	Gene name	Category	Details	FFPE-RNA-
symbol				Seq data
VEGFA	Vascular endothelial	Angiogenesis	Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth.	yes
	growth factor		Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis	
			and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and	
			KDR/VEGFR2 receptors, heparan sulfate and heparin.	
NDRG1	N-myc downstream	Stress response	Involved in stress responses, hormone responses, cell growth, and differentiation.	yes
	regulated gene 1		Necessary for p53-mediated caspase activation and apoptosis.	
ANGPTL4	Angiopoietin-like 4	Angiogenesis,	Hypoxia-induced expression in endothelial cells. May act as a regulator of	no
		hypoxia	angiogenesis and modulate tumorigenesis. In response to hypoxia, the unprocessed	
			form of the protein accumulates in the subendothelial extracellular matrix.	
ADM	Adrenomedullin	Angiogenesis	Adrenomedullin functions include vasodilation, regulation of hormone secretion,	no
			and promotion of angiogenesis.	
DDIT4	DNA damage	Stress response	Regulates cell growth, proliferation and survival via inhibition of mTORC1. Important	no
	induced transcript 4		role in responses to cellular energy levels and cellular stress, including responses to	
			hypoxia and DNA damage.	
CSTB	Cystatin-B	Proteinase	Intracellular thiol proteinase inhibitor thought to play a role in protecting against	yes
		inhibitor	proteases leaking from lysosomes.	

Supplementary Table S5: Core genes of the hypoxia signature cluster from different datasets with correlated expression

Calcart	[[I]] = [(A D]]	Γ in align $\pi (M = 22)$	[[n d] n = (N - 22)	E. II (A/ 102)
Conort	Finding (N=23)	Finding (N=23)	Finding (/V=23)	Full (N=193)
Source	Whole slide	Whole slide	TMA	TMA
Method	pathological scoring	digital image analysis	digital image analysis	digital image analysis
Cutoff	pos/neg	>10% positive cells	>10% positive cells	>10% positive cells
Positive by RNA-Seq*	19	19	19	20
Negative by RNA-Seq*	4	4	4	173
Accuracy	91.3 %	73.9 %	47.8 %	81.9 %
Sensitivity	89.5 %	68.4 %	36.8 %	40.0 %
Specificity	100.0 %	100.0 %	100.0 %	86.7 %
PPV	100.0 %	100.0 %	100.0 %	25.8 %
NPV	66.7 %	40.0 %	25.0 %	92.6 %

Supplementary Table S6: Accuracy of IHC detection of NDRG1 as marker of the hypoxia signature

* based on cutoff z-score 1.5 from RNA-Seq

	Supplementary	Table S7: Co	mparison a	of hormone rece	ptor status	from RNA-	Sea and IHC
--	----------------------	--------------	------------	-----------------	-------------	-----------	-------------

High Quality samples	Sensitivity	Specificity	PPV	NPV	Accuracy
ER _{RNA-Seq} vs. ER _{IHC} (N=221)	75.7 %	93.4 %	92.6 %	78.0 %	84.2 %
PR _{RNA-Seq} vs. PR _{IHC} (N=221)	76.6 %	83.5 %	77.4 %	82.8 %	80.5 %
Low Quality samples	Sensitivity	Specificity	PPV	NPV	Accuracy
ER _{RNA-Seq} vs. ER _{IHC} (N=68)	72.7 %	88.6 %	85.7 %	77.5 %	80.9 %
PR _{RNA-Seq} vs. PR _{IHC} (<i>N</i> =67)	61.3 %	86.1 %	79.2 %	72.1 %	74.6 %

Supplementary Table S8: Comparison of Molecular Subtyping between High Quality and Low Quality Samples

Group	Basal-like	Her2-enrich.	LumA	LumB	Normal-like
Total (<i>N</i> =289)	119 (41.2%)	60 (20.8%)	33 (11.4.%)	46 (15.9%)	31 (10.7%)
HQ no dupl. (<i>N</i> =221, %)	103 (46.6%)	33 (14.9%)	28 (12.7%)	42 (19.0%)	15 (6.8%)
LQ no dupl. (<i>N</i> =68, %)	16 (23.5%)	27 (39.7%)	5 (7.4%)	4 (5.9%)	16 (23.5%)

The distributions of molecular subtypes according to AIMS differ significantly ($P = 8.6 \times 10^{-9}$, Fisher's Exact Test) between samples with high and low quality.

Molecular marker	OR	95% CI	P-value
Basal-like*	8.88	2.34-33.6	0.001
HER2-enriched*	3.33	0.79-14.1	0.10
Lum-A*	0.87	0.18-4.28	0.86
Lum-B*	2.22	0.54-9.14	0.27
T-cell signature [#]	1.60	1.21-2.12	0.001
Proliferation signature [#]	2.88	2.00-4.16	<0.001
Hypoxia signature [#]	1.92	1.41-2.60	<0.001

Supplementary Table S9: Univariate logistic regression of pCR by molecular markers (N=221 High Quality samples)

* vs. Normal-like subtype, [#]z-score

Supplementary Table S10: Multivariate logistic regression of pCR with NDRG1 from TMA analysis

	OR	95% CI	P-value
Hormone receptor (neg. vs. pos.)	4.35	2.34-8.07	<0.001
NDRG1-TMA-IHC (z-score >1.5)	3.79	0.85-16.9	0.080
Bevacizumab therapy	0.92	0.53-1.60	0.766
Interaction NDRG1-TMA-IHC * bevacizumab	1.31	0.78-2.21	0.309
cN (≥10 vs 4-9 vs 1-3 vs 0 positive nodes)	0.80	0.52-1.24	0.323
cT (T4d vs T4a-c vs T3 vs T2 vs T1)	0.80	0.59-1.0	0.173
Grading (G3 vs G2 vs G1)	1.43	0.83-2.48	0.197